MEM6804 Modeling and Simulation for Logistics \＆Supply Chain物流与供应链建模与仿真

Theory Analysis

Lecture 10：Output Analysis III：Optimization

SHEN Haihui 沈海辉

Sino－US Global Logistics Institute

Shanghai Jiao Tong University

个 shenhaihui．github．io／teaching／mem6804f
－shenhaihui＠sjtu．edu．cn

Spring 2021 （full－time）

Contents

(1) Introduction

- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation
(4) Black-box DOvS Problem
- Simulated Annealing
- COMPASS
(5) Usage in Softwares
(1) Introduction
- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation
(4) Black-box DOvS Problem
- Simulated Annealing
- COMPASS
(5) Usage in Softwares

Introduction

- Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$
\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)],
$$

where $\mathcal{X} \subset \mathbb{R}^{d}$ is the feasible set, and $g: \mathcal{X} \rightarrow \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

- Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$
\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)],
$$

where $\mathcal{X} \subset \mathbb{R}^{d}$ is the feasible set, and $g: \mathcal{X} \rightarrow \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

- Given $\boldsymbol{x}, G(\boldsymbol{x}, \xi)$ is a random variable (the randomness is from $\xi)$, and the distribution of $G(\boldsymbol{x}, \xi)$ is unknown.
- Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$
\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)],
$$

where $\mathcal{X} \subset \mathbb{R}^{d}$ is the feasible set, and $g: \mathcal{X} \rightarrow \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

- Given $\boldsymbol{x}, G(\boldsymbol{x}, \xi)$ is a random variable (the randomness is from $\xi)$, and the distribution of $G(\boldsymbol{x}, \xi)$ is unknown.
- Given \boldsymbol{x}, realizations of $G(\boldsymbol{x}, \xi)$ can be observed by running simulation, or more generally, taking samples.
- OvS Problem can be classified into two types according to whether the explicit form of $G(\boldsymbol{x}, \xi)$ is available.

Introduction

- OvS Problem can be classified into two types according to whether the explicit form of $G(\boldsymbol{x}, \xi)$ is available.
- White-box: The explicit form of $G(\boldsymbol{x}, \xi)$ is available.
- Example: $G(x, \xi)=\sin \left((x-\xi)^{2}\right)$, where the distribution of ξ is unknown.
- OvS Problem can be classified into two types according to whether the explicit form of $G(\boldsymbol{x}, \xi)$ is available.
- White-box: The explicit form of $G(\boldsymbol{x}, \xi)$ is available.
- Example: $G(x, \xi)=\sin \left((x-\xi)^{2}\right)$, where the distribution of ξ is unknown.
- Black-box: The explicit form of $G(\boldsymbol{x}, \xi)$ is not available and it is embedded in a simulation model.
- Example: Let $G(\boldsymbol{x}, \xi)$ be the waiting time of a customer in a complex queueing network, where \boldsymbol{x} represents the configuration parameters.
- OvS Problem can be classified into three types according to the feasible set \mathcal{X}.

Introduction

- OvS Problem can be classified into three types according to the feasible set \mathcal{X}.
- Ranking and selection (R\&S): \mathcal{X} is a set of relatively small number of (discrete) solutions.
- OvS Problem can be classified into three types according to the feasible set \mathcal{X}.
- Ranking and selection (R\&S): \mathcal{X} is a set of relatively small number of (discrete) solutions.
- Discrete OvS (DOvS): \mathcal{X} is a discrete set, with huge or even countably infinite number of solutions.
- One can also view R\&S problem as a special type of DOvS problem.
- OvS Problem can be classified into three types according to the feasible set \mathcal{X}.
- Ranking and selection (R\&S): \mathcal{X} is a set of relatively small number of (discrete) solutions.
- Discrete OvS (DOvS): \mathcal{X} is a discrete set, with huge or even countably infinite number of solutions.
- One can also view R\&S problem as a special type of DOvS problem.
- Continuous OvS (COvS): \mathcal{X} is a continuous set, hence there exits uncountably infinite number of solutions.
(1) Introduction
- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation
(4) Black-box DOvS Problem
- Simulated Annealing
- COMPASS
(5) Usage in Softwares

White-box OvS Problem

- For white-box OvS problems, we can use the sample average approximation.

White-box OvS Problem

- For white-box OvS problems, we can use the sample average approximation.
- Of course, those algorithms designed for black-box OvS problems can also be applied to white-box OvS problems.

White-box OvS Problem

- Suppose that we have an iid sample $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ of ξ.
- To solve $\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)]$, we try to solve

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}):=\frac{1}{n} \sum_{i=1}^{n} G\left(\boldsymbol{x}, \xi_{i}\right)
$$

with any suitable deterministic optimization algorithm (after $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is realized).

White-box OvS Problem

- Suppose that we have an iid sample $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ of ξ.
- To solve $\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)]$, we try to solve

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}):=\frac{1}{n} \sum_{i=1}^{n} G\left(\boldsymbol{x}, \xi_{i}\right)
$$

with any suitable deterministic optimization algorithm (after $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is realized).

- This method is called Sample Average Approximation (SAA); see Kim et al. (2015) for a review.

White-box OvS Problem

- Suppose that we have an iid sample $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ of ξ.
- To solve $\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}):=\mathbb{E}[G(\boldsymbol{x}, \xi)]$, we try to solve

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}):=\frac{1}{n} \sum_{i=1}^{n} G\left(\boldsymbol{x}, \xi_{i}\right)
$$

with any suitable deterministic optimization algorithm (after $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is realized).

- This method is called Sample Average Approximation (SAA); see Kim et al. (2015) for a review.
- Clearly, for finite $n, \inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})$ is a random variable (before $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is realized), and it is not strictly equal to $\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})$.

White-box OvS Problem

- Indeed, one can prove that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

White-box OvS Problem

- Indeed, one can prove that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

Proof.

White-box OvS Problem

- Indeed, one can prove that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

Proof. For any $\boldsymbol{y} \in \mathcal{X}$,

$$
\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}) \leq \widehat{g}_{n}(\boldsymbol{y}) \Longrightarrow \mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \mathbb{E}\left[\widehat{g}_{n}(\boldsymbol{y})\right]=g(\boldsymbol{y})
$$

White-box OvS Problem

- Indeed, one can prove that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

Proof. For any $\boldsymbol{y} \in \mathcal{X}$,

$$
\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}) \leq \widehat{g}_{n}(\boldsymbol{y}) \Longrightarrow \mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \mathbb{E}\left[\widehat{g}_{n}(\boldsymbol{y})\right]=g(\boldsymbol{y})
$$

Minimizing the right-hand side over all $\boldsymbol{y} \in \mathcal{X}$ completes the proof.

White-box OvS Problem

- Indeed, one can prove that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

Proof. For any $\boldsymbol{y} \in \mathcal{X}$,

$$
\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}) \leq \widehat{g}_{n}(\boldsymbol{y}) \Longrightarrow \mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \mathbb{E}\left[\widehat{g}_{n}(\boldsymbol{y})\right]=g(\boldsymbol{y})
$$

Minimizing the right-hand side over all $\boldsymbol{y} \in \mathcal{X}$ completes the proof.

- Moreover, it can also be shown that

$$
\mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})\right] \leq \mathbb{E}\left[\inf _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n+1}(\boldsymbol{x})\right] \leq \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})
$$

(Prove it as an exercise)

White-box OvS Problem

- What can we say if we continuously increase sample size n ?

White-box OvS Problem

- What can we say if we continuously increase sample size n ?
- It will be reassuring if we know that the obtained solution will be closer and closer to the true solution, as we increase sample size n.

White-box OvS Problem

- What can we say if we continuously increase sample size n ?
- It will be reassuring if we know that the obtained solution will be closer and closer to the true solution, as we increase sample size n.
- Formally, we are seeking for a convergence guarantee for SAA method.

White-box OvS Problem

- For set $\mathcal{A} \subset \mathbb{R}^{d}$, the distance from $\boldsymbol{x} \in \mathbb{R}^{d}$ to \mathcal{A} is defined as

$$
\operatorname{dist}(\boldsymbol{x}, \mathcal{A}):=\inf _{\boldsymbol{y} \in \mathcal{A}}\|\boldsymbol{x}-\boldsymbol{y}\|,
$$

where $\|\cdot\|$ denotes the Euclidean distance.

White-box OvS Problem

- For set $\mathcal{A} \subset \mathbb{R}^{d}$, the distance from $\boldsymbol{x} \in \mathbb{R}^{d}$ to \mathcal{A} is defined as

$$
\operatorname{dist}(\boldsymbol{x}, \mathcal{A}):=\inf _{\boldsymbol{y} \in \mathcal{A}}\|\boldsymbol{x}-\boldsymbol{y}\|,
$$

where $\|\cdot\|$ denotes the Euclidean distance.

- For sets $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^{d}$, the deviation from \mathcal{A} to \mathcal{B} is defined as

$$
D(\mathcal{A}, \mathcal{B}):=\sup _{\boldsymbol{x} \in \mathcal{A}} \operatorname{dist}(\boldsymbol{x}, \mathcal{B})
$$

White-box OvS Problem

- For set $\mathcal{A} \subset \mathbb{R}^{d}$, the distance from $\boldsymbol{x} \in \mathbb{R}^{d}$ to \mathcal{A} is defined as

$$
\operatorname{dist}(\boldsymbol{x}, \mathcal{A}):=\inf _{\boldsymbol{y} \in \mathcal{A}}\|\boldsymbol{x}-\boldsymbol{y}\|,
$$

where $\|\cdot\|$ denotes the Euclidean distance.

- For sets $\mathcal{A}, \mathcal{B} \subset \mathbb{R}^{d}$, the deviation from \mathcal{A} to \mathcal{B} is defined as

$$
D(\mathcal{A}, \mathcal{B}):=\sup _{\boldsymbol{x} \in \mathcal{A}} \operatorname{dist}(\boldsymbol{x}, \mathcal{B})
$$

- Let

$$
\begin{aligned}
\mathcal{S} & :=\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} g(\boldsymbol{x}), \\
\widehat{\mathcal{S}}_{n} & :=\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} \widehat{g}_{n}(\boldsymbol{x}) .
\end{aligned}
$$

White-box OvS Problem

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009))

Suppose that
(1) \mathcal{X} is a compact set;
(2) $g(x)$ is finite valued and continuous on \mathcal{X};
(3) $\mathbb{P}\left\{\widehat{g}_{n}(\boldsymbol{x}) \rightarrow g(\boldsymbol{x})\right.$ uniformly in $\left.\boldsymbol{x} \in \mathcal{X}\right\}=1$;
(4) $\mathbb{P}\left\{\widehat{\mathcal{S}}_{n}\right.$ is nonempty for n large enough $\}=1$;

Then, as $n \rightarrow \infty$,

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}) \xrightarrow{\text { a.s. }} \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}), \text { and } D\left(\widehat{\mathcal{S}}_{n}, \mathcal{S}\right) \xrightarrow{\text { a.s. }} 0 .
$$

White-box OvS Problem

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009))

Suppose that
(1) \mathcal{X} is a compact set;
(2) $g(x)$ is finite valued and continuous on \mathcal{X};
(3) $\mathbb{P}\left\{\widehat{g}_{n}(\boldsymbol{x}) \rightarrow g(\boldsymbol{x})\right.$ uniformly in $\left.\boldsymbol{x} \in \mathcal{X}\right\}=1$;
(4) $\mathbb{P}\left\{\widehat{\mathcal{S}}_{n}\right.$ is nonempty for n large enough $\}=1$;

Then, as $n \rightarrow \infty$,

$$
\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x}) \xrightarrow{\text { a.s. }} \min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}), \text { and } D\left(\widehat{\mathcal{S}}_{n}, \mathcal{S}\right) \xrightarrow{\text { a.s. }} 0 .
$$

Besides, if $\mathcal{S}=\left\{\boldsymbol{x}^{*}\right\}$ is a singleton, then for any $\widehat{\boldsymbol{x}}_{n} \in \widehat{\mathcal{S}}_{n}$,

$$
\widehat{\boldsymbol{x}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{x}^{*}, \text { as } n \rightarrow \infty .
$$

White-box OvS Problem

- How fast does the SAA solution converge to the true solution?

White-box OvS Problem

- How fast does the SAA solution converge to the true solution?
- Formally, it's known as the rate of convergence.

White-box OvS Problem

- How fast does the SAA solution converge to the true solution?
- Formally, it's known as the rate of convergence.
- Under certain regularity conditions, one may show that

$$
\left|\min _{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_{n}(\boldsymbol{x})-\min _{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x})\right|=O_{p}\left(n^{-1 / 2}\right)
$$

and given $\mathcal{S}=\left\{\boldsymbol{x}^{*}\right\}$ is a singleton,

$$
\left\|\widehat{\boldsymbol{x}}_{n}-\boldsymbol{x}^{*}\right\|=O_{p}\left(n^{-1 / 2}\right)
$$

(1) Introduction

- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation
(4) Black-box DOvS Problem
- Simulated Annealing
- COMPASS
(5) Usage in Softwares

Black-box COvS Problem

- Main types of algorithms for black-box COvS problems:
- random search; see Andradóttir (2015) for a review;
- stochastic approximation; see Chau and Fu (2015) for a review;
- surrogate-based methods; see Hong and Zhang (2021) for a review.

Black-box COvS Problem

- Main types of algorithms for black-box COvS problems:
- random search; see Andradóttir (2015) for a review;
- stochastic approximation; see Chau and Fu (2015) for a review;
- surrogate-based methods; see Hong and Zhang (2021) for a review.
- Stochastic Approximation (SA) was proposed by Robbins and Monro (1951) and Kiefer and Wolfowitz (1952).
- SA can be viewed as a stochastic version of the gradient descent (or called steepest descent) algorithm, so it is also called stochastic gradient descent.
- Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable (deterministic) function:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\gamma \nabla g\left(\boldsymbol{x}_{k}\right)
$$

where $\nabla g(\boldsymbol{x})$ is the gradient and $\gamma>0$ is the step size.

- Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable (deterministic) function:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\gamma \nabla g\left(\boldsymbol{x}_{k}\right)
$$

where $\nabla g(\boldsymbol{x})$ is the gradient and $\gamma>0$ is the step size.

- If the minimization problem is constrained, say the feasible set $\mathcal{X} \subset \mathbb{R}^{d}$ is convex and compact, one can easily add a projection $\Pi_{\mathcal{X}}(\boldsymbol{x})$ mapping $\boldsymbol{x} \notin \mathcal{X}$ back into \mathcal{X}.

- The value of the step size γ is allowed to change at every iteration, and with proper choice, convergence to a local minimizer (say, \boldsymbol{x}^{*}) can be guaranteed, i.e., $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}^{*}$.

- The value of the step size γ is allowed to change at every iteration, and with proper choice, convergence to a local minimizer (say, \boldsymbol{x}^{*}) can be guaranteed, i.e., $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}^{*}$.
- Under certain regularity conditions, one can show that $\left|g\left(\boldsymbol{x}_{k}\right)-g\left(\boldsymbol{x}^{*}\right)\right|=O\left(k^{-1}\right)$ for unconstraied problem with constant γ.
- SA as a stochastic version of the gradient ascent:

$$
\boldsymbol{X}_{k+1}=\Pi_{\mathcal{X}}\left(\boldsymbol{X}_{k}-a_{k} \hat{\nabla} g\left(\boldsymbol{X}_{k}\right)\right)
$$

where $\Pi_{\mathcal{X}}$ is the projection, $\left\{a_{k}\right\}_{k \geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla} g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

- SA as a stochastic version of the gradient ascent:

$$
\boldsymbol{X}_{k+1}=\Pi_{\mathcal{X}}\left(\boldsymbol{X}_{k}-a_{k} \widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)\right)
$$

where $\Pi_{\mathcal{X}}$ is the projection, $\left\{a_{k}\right\}_{k \geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla} g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

- In some simulation experiments, unbiased $\widehat{\nabla} g(\boldsymbol{x})$ is available, ${ }^{\dagger}$ then it is the Robbins-Monro (RM) type SA (Robbins and Monro 1951).

[^0]- SA as a stochastic version of the gradient ascent:

$$
\boldsymbol{X}_{k+1}=\Pi_{\mathcal{X}}\left(\boldsymbol{X}_{k}-a_{k} \widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)\right)
$$

where $\Pi_{\mathcal{X}}$ is the projection, $\left\{a_{k}\right\}_{k \geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla} g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

- In some simulation experiments, unbiased $\widehat{\nabla} g(\boldsymbol{x})$ is available, ${ }^{\dagger}$ then it is the Robbins-Monro (RM) type SA (Robbins and Monro 1951).
- Otherwise, $\widehat{\nabla} g(\boldsymbol{x})$ needs to be constructed with certain indirect method (thus biased), then it is the Kiefer-Wolfowitz (KW) type SA Kiefer and Wolfowitz (1952).

[^1]- Gradient descent vs SA (i.e., stochastic gradient desecent):

Gradient Descent

Stochastic Gradient Descent

- Construct $\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)$ via symmetric (or central) finite difference:

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right):=\left(g_{1}\left(\boldsymbol{X}_{k}\right), \ldots, g_{d}\left(\boldsymbol{X}_{k}\right)\right)^{\top}
$$

where

$$
g_{i}\left(\boldsymbol{X}_{k}\right):=\frac{G\left(\boldsymbol{X}_{k}+c_{k} \boldsymbol{e}_{i}\right)-G\left(\boldsymbol{X}_{k}-c_{k} \boldsymbol{e}_{i}\right)}{2 c_{k}}
$$

\boldsymbol{e}_{i} denotes a $d \times 1$ vector whose i th element is one and other elements are all zeros, $i=1, \ldots, d$, and $\left\{c_{k}\right\}_{k \geq 1}$ is a deterministic positive sequence.

- Construct $\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)$ via symmetric (or central) finite difference:

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right):=\left(g_{1}\left(\boldsymbol{X}_{k}\right), \ldots, g_{d}\left(\boldsymbol{X}_{k}\right)\right)^{\top}
$$

where

$$
g_{i}\left(\boldsymbol{X}_{k}\right):=\frac{G\left(\boldsymbol{X}_{k}+c_{k} \boldsymbol{e}_{i}\right)-G\left(\boldsymbol{X}_{k}-c_{k} \boldsymbol{e}_{i}\right)}{2 c_{k}}
$$

\boldsymbol{e}_{i} denotes a $d \times 1$ vector whose i th element is one and other elements are all zeros, $i=1, \ldots, d$, and $\left\{c_{k}\right\}_{k \geq 1}$ is a deterministic positive sequence.

- It requires $2 d$ aditional simulation runs (samples) to compute $\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)$.

Black-box COvS Problem

- Let \mathcal{M} denote the set of local optimal solutions:

$$
\mathcal{M}:=\left\{\boldsymbol{x} \in \mathcal{X}: g(\boldsymbol{x}) \leq \min _{\boldsymbol{y} \in \mathcal{B}(\boldsymbol{x})} g(\boldsymbol{y})\right\},
$$

where $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denotes a neighborhood of $\boldsymbol{x} \in \mathcal{X}$.

- Let \mathcal{M} denote the set of local optimal solutions:

$$
\mathcal{M}:=\left\{\boldsymbol{x} \in \mathcal{X}: g(\boldsymbol{x}) \leq \min _{\boldsymbol{y} \in \mathcal{B}(\boldsymbol{x})} g(\boldsymbol{y})\right\},
$$

where $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denotes a neighborhood of $\boldsymbol{x} \in \mathcal{X}$.

Local Convergence of SA (Theorem 3 of Blum (1954))

Suppose that
(1) $g(x)$ satisfies certain regularity conditions;
(2) $\operatorname{Var}(G(\boldsymbol{x}, \xi)) \leq \sigma^{2}<\infty$;
(3) $\lim _{k \rightarrow \infty} c_{k}=0, \sum_{k=1}^{\infty} a_{k}=\infty, \sum_{k=1}^{\infty} a_{k} c_{k}<\infty$, and $\sum_{k=1}^{\infty} a_{k}^{2} c_{k}^{-2}<\infty$.

Then, for KW type SA with symmetric difference gradient estimator, $\operatorname{dist}\left(\boldsymbol{X}_{k}, \mathcal{M}\right) \xrightarrow{\text { a.s. }} 0$ as $k \rightarrow \infty$.

- Uunder certain conditions, for $\boldsymbol{x}^{*} \in \mathcal{M}$ such that $\boldsymbol{X}_{k} \xrightarrow{\text { a.s. }} \boldsymbol{x}^{*}$, RM type SA can reach $O_{p}\left(k^{-1 / 2}\right)$ rate of convergence, i.e.,

$$
\left\|\boldsymbol{X}_{k}-\boldsymbol{x}^{*}\right\|=O_{p}\left(k^{-1 / 2}\right)
$$

while KW type SA can reach $O_{p}\left(k^{-1 / 3}\right)$ rate of convergence.

- Uunder certain conditions, for $\boldsymbol{x}^{*} \in \mathcal{M}$ such that $\boldsymbol{X}_{k} \xrightarrow{\text { a.s. }} \boldsymbol{x}^{*}$, RM type SA can reach $O_{p}\left(k^{-1 / 2}\right)$ rate of convergence, i.e.,

$$
\left\|\boldsymbol{X}_{k}-\boldsymbol{x}^{*}\right\|=O_{p}\left(k^{-1 / 2}\right)
$$

while KW type SA can reach $O_{p}\left(k^{-1 / 3}\right)$ rate of convergence.

- Note that the above order is in terms of the iteration number k, rather than the number of simulation runs (sample size).
- Uunder certain conditions, for $\boldsymbol{x}^{*} \in \mathcal{M}$ such that $\boldsymbol{X}_{k} \xrightarrow{\text { a.s. }} \boldsymbol{x}^{*}$, RM type SA can reach $O_{p}\left(k^{-1 / 2}\right)$ rate of convergence, i.e.,

$$
\left\|\boldsymbol{X}_{k}-\boldsymbol{x}^{*}\right\|=O_{p}\left(k^{-1 / 2}\right)
$$

while KW type SA can reach $O_{p}\left(k^{-1 / 3}\right)$ rate of convergence.

- Note that the above order is in terms of the iteration number k, rather than the number of simulation runs (sample size).
- If in terms of the sample size n, the rate of convergence of KW type SA is $O_{p}\left((n / d)^{-1 / 3}\right)$, which depends on the dimensionality d.
- Simultaneous perturbation stochastic approximation (SPSA):

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right):=\left(g_{1}\left(\boldsymbol{X}_{k}\right), \ldots, g_{d}\left(\boldsymbol{X}_{k}\right)\right)^{\top}
$$

where

$$
g_{i}\left(\boldsymbol{X}_{k}\right):=\frac{G\left(\boldsymbol{X}_{k}+c_{k} \boldsymbol{B}_{k}\right)-G\left(\boldsymbol{X}_{k}-c_{k} \boldsymbol{B}_{k}\right)}{2 c_{k} B_{k, i}},
$$

$\boldsymbol{B}_{k}:=\left(B_{k, 1}, \ldots, B_{k, d}\right)^{\top}$, and $B_{k, i}=1$ or -1 with probability $1 / 2$.

- Simultaneous perturbation stochastic approximation (SPSA):

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right):=\left(g_{1}\left(\boldsymbol{X}_{k}\right), \ldots, g_{d}\left(\boldsymbol{X}_{k}\right)\right)^{\top}
$$

where

$$
g_{i}\left(\boldsymbol{X}_{k}\right):=\frac{G\left(\boldsymbol{X}_{k}+c_{k} \boldsymbol{B}_{k}\right)-G\left(\boldsymbol{X}_{k}-c_{k} \boldsymbol{B}_{k}\right)}{2 c_{k} B_{k, i}},
$$

$\boldsymbol{B}_{k}:=\left(B_{k, 1}, \ldots, B_{k, d}\right)^{\top}$, and $B_{k, i}=1$ or -1 with probability $1 / 2$.

- It requires only 2 aditional simulation runs (samples) to compute $\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)$, no matter what d is.
- Simultaneous perturbation stochastic approximation (SPSA):

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right):=\left(g_{1}\left(\boldsymbol{X}_{k}\right), \ldots, g_{d}\left(\boldsymbol{X}_{k}\right)\right)^{\top}
$$

where

$$
g_{i}\left(\boldsymbol{X}_{k}\right):=\frac{G\left(\boldsymbol{X}_{k}+c_{k} \boldsymbol{B}_{k}\right)-G\left(\boldsymbol{X}_{k}-c_{k} \boldsymbol{B}_{k}\right)}{2 c_{k} B_{k, i}},
$$

$\boldsymbol{B}_{k}:=\left(B_{k, 1}, \ldots, B_{k, d}\right)^{\top}$, and $B_{k, i}=1$ or -1 with probability $1 / 2$.

- It requires only 2 aditional simulation runs (samples) to compute $\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right)$, no matter what d is.
- SPSA can reach $O_{p}\left(n^{-1 / 3}\right)$ rate of convergence in terms of the sample size n.
(1) Introduction
- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation

4) Black-box DOvS Problem

- Simulated Annealing
- COMPASS
(5) Usage in Softwares

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
- Initialization:
- At Iteration k :
- Sampling:
- Evaluation:
- Updating:

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0}^{*} \in \mathcal{X}$; set the information set (that keeps visited solutions and their corresponding observations) \mathcal{F}_{0}; set iteration index $k=0$.
- At Iteration k :
- Sampling:
- Evaluation:
- Updating:

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0}^{*} \in \mathcal{X}$; set the information set (that keeps visited solutions and their corresponding observations) \mathcal{F}_{0}; set iteration index $k=0$.
- At Iteration k :
- Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_{k}.
- Evaluation:
- Updating:

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0}^{*} \in \mathcal{X}$; set the information set (that keeps visited solutions and their corresponding observations) \mathcal{F}_{0}; set iteration index $k=0$.
- At Iteration k :
- Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_{k}.
- Evaluation: For each $\boldsymbol{x} \in \mathcal{E}$, spend simulation effort according to certain rule determined by \mathcal{F}_{k} and \mathcal{E}.
- Updating:

Black-box DOvS Problem

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0}^{*} \in \mathcal{X}$; set the information set (that keeps visited solutions and their corresponding observations) \mathcal{F}_{0}; set iteration index $k=0$.
- At Iteration k :
- Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_{k}.
- Evaluation: For each $\boldsymbol{x} \in \mathcal{E}$, spend simulation effort according to certain rule determined by \mathcal{F}_{k} and \mathcal{E}.
- Updating: Update \mathcal{F}_{k+1}; choose some \boldsymbol{x}_{k+1}^{*} as the current best solution based on certain estimator; set $k \leftarrow k+1$.
- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
- It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
- It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- A large body of literature has developed the simulated annealing algorithm to solve deterministic global optimization problems over finite set; important works include Kirkpatrick et al. (1983), Mitra et al. (1986), Hajek (1988), etc.
- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
- It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- A large body of literature has developed the simulated annealing algorithm to solve deterministic global optimization problems over finite set; important works include Kirkpatrick et al. (1983), Mitra et al. (1986), Hajek (1988), etc.
- Later, the simulated annealing was extended to solve black-box DOvS problems over finite set; important works include Bulgak and Sander (1988), Gelfand and Mitter (1989), Alrefaei and Andradóttir (1999), etc.

Black-box DOvS Problem

- Let $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denote a neighborhood ${ }^{\dagger}$ of $\boldsymbol{x} \in \mathcal{X}$.
${ }^{\dagger}$ The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
- Let $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denote a neighborhood ${ }^{\dagger}$ of $\boldsymbol{x} \in \mathcal{X}$.
- $\mathcal{B}(\boldsymbol{x})$ is carefully desined such that, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}, \boldsymbol{y}$ is reachable from \boldsymbol{x}.
- That is, there exists a finite sequence $\boldsymbol{x}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\ell}=\boldsymbol{y}$ such that $\boldsymbol{x}_{i+1} \in \mathcal{B}\left(\boldsymbol{x}_{i}\right), i=0,1, \ldots, \ell-1$.

[^2]- Let $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denote a neighborhood ${ }^{\dagger}$ of $\boldsymbol{x} \in \mathcal{X}$.
- $\mathcal{B}(\boldsymbol{x})$ is carefully desined such that, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}, \boldsymbol{y}$ is reachable from \boldsymbol{x}.
- That is, there exists a finite sequence $\boldsymbol{x}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\ell}=\boldsymbol{y}$ such that $\boldsymbol{x}_{i+1} \in \mathcal{B}\left(\boldsymbol{x}_{i}\right), i=0,1, \ldots, \ell-1$.
- Define transition probability $R(\boldsymbol{x}, \boldsymbol{y})$, where $R: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ and $R(\boldsymbol{x}, \boldsymbol{y})>0 \Longleftrightarrow y \in \mathcal{B}(\boldsymbol{x})$.

[^3]- Let $\mathcal{B}(\boldsymbol{x}) \subset \mathcal{X}$ denote a neighborhood ${ }^{\dagger}$ of $\boldsymbol{x} \in \mathcal{X}$.
- $\mathcal{B}(\boldsymbol{x})$ is carefully desined such that, for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}, \boldsymbol{y}$ is reachable from \boldsymbol{x}.
- That is, there exists a finite sequence $\boldsymbol{x}=\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\ell}=\boldsymbol{y}$ such that $\boldsymbol{x}_{i+1} \in \mathcal{B}\left(\boldsymbol{x}_{i}\right), i=0,1, \ldots, \ell-1$.
- Define transition probability $R(\boldsymbol{x}, \boldsymbol{y})$, where $R: \mathcal{X} \times \mathcal{X} \rightarrow[0, \infty)$ and $R(\boldsymbol{x}, \boldsymbol{y})>0 \Longleftrightarrow y \in \mathcal{B}(\boldsymbol{x})$.
- Let $\left\{t_{k}\right\}_{k \geq 1}$ be a positive sequence of numbers, which is konwn as the temperature.

[^4]
Black-box DOvS Problem

- Simulated annealing algorithm for deterministic optimization:
- Initialization:
- At Iteration k :
- Sampling:
- Evaluation: No need in the deterministic optimization.
- Updating:
- Simulated annealing algorithm for deterministic optimization:
- Initialization: Arbitrarily choose $\boldsymbol{X}_{0} \in \mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling:
- Evaluation: No need in the deterministic optimization.
- Updating:
- Simulated annealing algorithm for deterministic optimization:
- Initialization: Arbitrarily choose $\boldsymbol{X}_{0} \in \mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample a candidate solution $\boldsymbol{Y}_{k+1} \in \mathcal{B}\left(\boldsymbol{X}_{k}\right)$ according to distribution $R\left(\boldsymbol{X}_{k}, \cdot\right)$, i.e.,

$$
\mathbb{P}\left(\boldsymbol{Y}_{k+1}=\boldsymbol{y} \mid \boldsymbol{X}_{k}=\boldsymbol{x}\right)=R(\boldsymbol{x}, \boldsymbol{y}) .
$$

- Evaluation: No need in the deterministic optimization.
- Updating:
- Simulated annealing algorithm for deterministic optimization:
- Initialization: Arbitrarily choose $\boldsymbol{X}_{0} \in \mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample a candidate solution $\boldsymbol{Y}_{k+1} \in \mathcal{B}\left(\boldsymbol{X}_{k}\right)$ according to distribution $R\left(\boldsymbol{X}_{k}, \cdot\right)$, i.e.,

$$
\mathbb{P}\left(\boldsymbol{Y}_{k+1}=\boldsymbol{y} \mid \boldsymbol{X}_{k}=\boldsymbol{x}\right)=R(\boldsymbol{x}, \boldsymbol{y}) .
$$

- Evaluation: No need in the deterministic optimization.
- Updating: Let

$$
\begin{aligned}
& \boldsymbol{X}_{k+1}:= \begin{cases}\boldsymbol{Y}_{k+1}, & \text { with probability } \exp \left\{\frac{-\left[g\left(\boldsymbol{Y}_{k+1}\right)-g\left(\boldsymbol{X}_{k}\right)\right]^{+}}{t_{k+1}}\right\}, \\
\boldsymbol{X}_{k}, & \text { otherwise; }\end{cases} \\
& \text { set } k \leftarrow k+1
\end{aligned}
$$

Black-box DOvS Problem

- To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$
\operatorname{dist}\left(\boldsymbol{X}_{k}, \mathcal{S}\right) \xrightarrow{\text { a.s. }} 0, \text { as } k \rightarrow \infty,
$$

Hajek (1988, Theorem 1) gives a sufficient condition.

- To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$
\operatorname{dist}\left(\boldsymbol{X}_{k}, \mathcal{S}\right) \xrightarrow{\text { a.s. }} 0, \text { as } k \rightarrow \infty,
$$

Hajek (1988, Theorem 1) gives a sufficient condition.
(1) $R(\boldsymbol{x}, \boldsymbol{y})$ satisfies weak reversibility; a sufficient example is that

$$
R(\boldsymbol{x}, \boldsymbol{y}):= \begin{cases}\frac{1}{|\mathcal{B}(\boldsymbol{x})|}, & \text { if } \boldsymbol{y} \in \mathcal{B}(\boldsymbol{x}) \\ 0, & \text { otherwise }\end{cases}
$$

with symmetric neighborhood, i.e., $\boldsymbol{y} \in \mathcal{B}(\boldsymbol{x}) \Longleftrightarrow \boldsymbol{x} \in \mathcal{B}(\boldsymbol{y})$.

Black-box DOvS Problem

- To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$
\operatorname{dist}\left(\boldsymbol{X}_{k}, \mathcal{S}\right) \xrightarrow{\text { a.s. }} 0, \text { as } k \rightarrow \infty,
$$

Hajek (1988, Theorem 1) gives a sufficient condition.
(1) $R(\boldsymbol{x}, \boldsymbol{y})$ satisfies weak reversibility; a sufficient example is that

$$
R(\boldsymbol{x}, \boldsymbol{y}):= \begin{cases}\frac{1}{|\mathcal{B}(\boldsymbol{x})|}, & \text { if } \boldsymbol{y} \in \mathcal{B}(\boldsymbol{x}), \\ 0, & \text { otherwise }\end{cases}
$$

with symmetric neighborhood, i.e., $\boldsymbol{y} \in \mathcal{B}(\boldsymbol{x}) \Longleftrightarrow \boldsymbol{x} \in \mathcal{B}(\boldsymbol{y})$.
(2) $\left\{t_{k}\right\}_{k \geq 1}$ takes the form

$$
t_{k}=\frac{c}{\ln (k+1)},
$$

where c is sufficiently large. ${ }^{\dagger}$
$\dagger^{\dagger} c \geq d^{*}$, where d^{*} is the maximum depth (Hajek (1988, p313) of the local but not global optimal solutions.

Black-box DOvS Problem

- Simulated annealing algorithm for black-box DOvS (Gelfand and Mitter 1989):
- Initialization: Arbitrarily choose $\boldsymbol{X}_{0} \in \mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample a candidate solution $\boldsymbol{Y}_{k+1} \in \mathcal{B}\left(\boldsymbol{X}_{k}\right)$ according to distribution $R\left(\boldsymbol{X}_{k}, \cdot\right)$, i.e.,

$$
\mathbb{P}\left(\boldsymbol{Y}_{k+1}=\boldsymbol{y} \mid \boldsymbol{X}_{k}=\boldsymbol{x}\right)=R(\boldsymbol{x}, \boldsymbol{y})
$$

- Evaluation: Let $\widehat{g}\left(\boldsymbol{Y}_{k+1}\right):=\frac{1}{n_{k+1}} \sum_{i=1}^{n_{k+1}} G\left(\boldsymbol{Y}_{k+1}, \xi_{i}\right)$, $\widehat{g}\left(\boldsymbol{X}_{k}\right):=\frac{1}{n_{k+1}} \sum_{i=1}^{n_{k+1}} G\left(\boldsymbol{X}_{k}, \xi_{i}\right) .^{\dagger}$
- Updating: Let

$$
\begin{aligned}
& \boldsymbol{X}_{k+1}:= \begin{cases}\boldsymbol{Y}_{k+1}, & \text { with probability } \exp \left\{\frac{-\left[\widehat{g}\left(\boldsymbol{Y}_{k+1}\right)-\widehat{g}\left(\boldsymbol{X}_{k}\right)\right]^{+}}{t_{k+1}}\right\}, \\
\boldsymbol{X}_{k}, & \text { otherwise; }\end{cases} \\
& \text { set } k \leftarrow k+1 .
\end{aligned}
$$

- Gelfand and Mitter (1989) show that if

$$
\widehat{g}\left(\boldsymbol{Y}_{k+1}\right) \mid \boldsymbol{Y}_{k+1}=\boldsymbol{y} \sim \mathcal{N}\left(g(\boldsymbol{y}), \sigma_{k+1}^{2}\right),
$$

such that $\sigma_{k}=o\left(t_{k}\right)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- Gelfand and Mitter (1989) show that if

$$
\widehat{g}\left(\boldsymbol{Y}_{k+1}\right) \mid \boldsymbol{Y}_{k+1}=\boldsymbol{y} \sim \mathcal{N}\left(g(\boldsymbol{y}), \sigma_{k+1}^{2}\right),
$$

such that $\sigma_{k}=o\left(t_{k}\right)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- A sufficient condition is that:
- $G(\boldsymbol{x}, \xi) \sim \mathcal{N}\left(g(\boldsymbol{x}), \sigma^{2}(\boldsymbol{x})\right)$ with $\sigma^{2}(\boldsymbol{x}) \leq \sigma^{2}<\infty$ for all $\boldsymbol{x} \in \mathcal{X}$.
- $\left\{n_{k}\right\}_{k \geq 1}$ satisfies $\lim _{k \rightarrow \infty} \frac{1}{t_{k} \sqrt{n_{k}}}=0$, i.e., $n_{k}:=t_{k}^{-\alpha}$ with $\alpha>2$.
- Gelfand and Mitter (1989) show that if

$$
\widehat{g}\left(\boldsymbol{Y}_{k+1}\right) \mid \boldsymbol{Y}_{k+1}=\boldsymbol{y} \sim \mathcal{N}\left(g(\boldsymbol{y}), \sigma_{k+1}^{2}\right)
$$

such that $\sigma_{k}=o\left(t_{k}\right)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- A sufficient condition is that:
- $G(\boldsymbol{x}, \xi) \sim \mathcal{N}\left(g(\boldsymbol{x}), \sigma^{2}(\boldsymbol{x})\right)$ with $\sigma^{2}(\boldsymbol{x}) \leq \sigma^{2}<\infty$ for all $\boldsymbol{x} \in \mathcal{X}$.
- $\left\{n_{k}\right\}_{k \geq 1}$ satisfies $\lim _{k \rightarrow \infty} \frac{1}{t_{k} \sqrt{n_{k}}}=0$, i.e., $n_{k}:=t_{k}^{-\alpha}$ with $\alpha>2$.
- Alrefaei and Andradóttir (1999) propose a modified simulated annealing algorithm for DOvS, which is also globally convergent:
- temperature t_{k} is constant;
- the current best solution is chosed in a different way.
- Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) is a locally convergent algorithm for black-box algorithm proposed by Hong and Nelson (2006).
- Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) is a locally convergent algorithm for black-box algorithm proposed by Hong and Nelson (2006).
- It can be used when the discrete feasible set is finite (i.e., fully constrained) or infinite (i.e., partially constrained or unconstrained).
- COMPASS for DOvS Hong and Nelson (2006):
- Initialization:
- At Iteration k :
- Sampling:
- Evaluation:
- Updating:
- COMPASS for DOvS Hong and Nelson (2006):
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0} \in \mathcal{X}$; set $\boldsymbol{x}_{0}^{*}=\boldsymbol{x}_{0}$ and $\mathcal{V}_{0}=\left\{\boldsymbol{x}_{0}\right\}$; take observations according to a simulation allocation rule (SAR) from \boldsymbol{x}_{0}; let $\mathcal{P}_{0}=\mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling:
- Evaluation:
- Updating:
- COMPASS for DOvS Hong and Nelson (2006):
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0} \in \mathcal{X}$; set $\boldsymbol{x}_{0}^{*}=\boldsymbol{x}_{0}$ and $\mathcal{V}_{0}=\left\{\boldsymbol{x}_{0}\right\}$; take observations according to a simulation allocation rule (SAR) from \boldsymbol{x}_{0}; let $\mathcal{P}_{0}=\mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample m solutions uniformly and independently from \mathcal{P}_{k}, denoted as $\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$; let $\mathcal{V}_{k+1}:=\mathcal{V}_{k} \cup\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$ be the estimation set.
- Evaluation:
- Updating:
- COMPASS for DOvS Hong and Nelson (2006):
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0} \in \mathcal{X}$; set $\boldsymbol{x}_{0}^{*}=\boldsymbol{x}_{0}$ and $\mathcal{V}_{0}=\left\{\boldsymbol{x}_{0}\right\}$; take observations according to a simulation allocation rule (SAR) from \boldsymbol{x}_{0}; let $\mathcal{P}_{0}=\mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample m solutions uniformly and independently from \mathcal{P}_{k}, denoted as $\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$; let $\mathcal{V}_{k+1}:=\mathcal{V}_{k} \cup\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$ be the estimation set.
- Evaluation: For each $\boldsymbol{x} \in \mathcal{V}_{k+1}$, take additional observations according to the SAR.
- Updating:
- COMPASS for DOvS Hong and Nelson (2006):
- Initialization: Arbitrarily choose $\boldsymbol{x}_{0} \in \mathcal{X}$; set $\boldsymbol{x}_{0}^{*}=\boldsymbol{x}_{0}$ and $\mathcal{V}_{0}=\left\{\boldsymbol{x}_{0}\right\}$; take observations according to a simulation allocation rule (SAR) from \boldsymbol{x}_{0}; let $\mathcal{P}_{0}=\mathcal{X}$; set iteration index $k=0$.
- At Iteration k :
- Sampling: Sample m solutions uniformly and independently from \mathcal{P}_{k}, denoted as $\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$; let $\mathcal{V}_{k+1}:=\mathcal{V}_{k} \cup\left\{\boldsymbol{x}_{k 1}, \ldots, \boldsymbol{x}_{k m}\right\}$ be the estimation set.
- Evaluation: For each $\boldsymbol{x} \in \mathcal{V}_{k+1}$, take additional observations according to the SAR.
- Updating: Update \mathcal{P}_{k+1}; choose the solution in \mathcal{V}_{k+1} with smallest estimated funtion value as \boldsymbol{x}_{k+1}^{*}; set $k \leftarrow k+1$.

Black-box DOvS Problem

- The way to construct \mathcal{P}_{k} - the most promising area:

Image from Jeff Hong

(1) Introduction

- Definition
- Types
(2) White-box OvS Problem
- Sample Average Approximation
(3) Black-box COvS Problem
- Gradient Descent
- Stochastic Approximation

4) Black-box DOvS Problem

- Simulated Annealing
- COMPASS
(5) Usage in Softwares

Usage in Softwares

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.

Usage in Softwares

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
- It is robust when used to solve practical OvS problems;
- but it has no provable convergence for OvS problems.

Usage in Softwares

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
- It is robust when used to solve practical OvS problems;
- but it has no provable convergence for OvS problems.
- None of those OvS algirhtms have been integrated into the commercial simulation softwares yet.

Usage in Softwares

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
- It is robust when used to solve practical OvS problems;
- but it has no provable convergence for OvS problems.
- None of those OvS algirhtms have been integrated into the commercial simulation softwares yet.
- So, for reaseachers in the field of OvS, there is still a long way to go...

[^0]: ${ }^{\dagger}$ When we observe $G(\boldsymbol{x}, \xi)$, we will also observe $\hat{\nabla} g(\boldsymbol{x}, \xi)$ at the same time such that $\mathbb{E}[\hat{\nabla} g(\boldsymbol{x}, \xi)]=\nabla g(\boldsymbol{x})$.

[^1]: ${ }^{\dagger}$ When we observe $G(\boldsymbol{x}, \xi)$, we will also observe $\hat{\nabla} g(\boldsymbol{x}, \xi)$ at the same time such that $\mathbb{E}[\hat{\nabla} g(\boldsymbol{x}, \xi)]=\nabla g(\boldsymbol{x})$.

[^2]: ${ }^{\dagger}$ The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!

[^3]: ${ }^{\dagger}$ The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!

[^4]: ${ }^{\dagger}$ The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!

